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THE SOLUTION OF BOUNDARY VALUE PROBLEMS OF THE THEORY 
OF SHELLS WITH AN UNKNOWN BOUNDARY* 

V.M. BOGOMOL'NYI 

The elliptical boundary value problem with an unknown free boundary is 
solved using analytic continuation into the domain of independent complex 
variables. The unknown region of solution is estimated using the method 
of characteristics based on the Schwarz mapping principle and the 
correspondence between the solutions of the Cauchy problem in the elliptical 
and hyperbolic region. A numerical solution of the problem in question 
is also obtained using Galerkin's method and Green's functions. 

Problems of the theory of elasticity with an unknown boundary of the domain of solution 
were studied in /l, 2/. The zone of influence of a hole in a stretched plate was determined 
in /2/ from the condition that the right-hand side of the characteristic equation on the 
contour of a unit circle obtained after the conformal transformation should be analvtic. The 
method of characteristics and the conditions for a solution to exist. determined by the 
Cauchy-Riemann 
for a toroidal 
domain. 

theorem, were used to obtain the domain of solution of the hyperboiic equation 
shell /3/. An analogous boundary value problem is solved below for an elliptical 
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Consider a segment of a torus with a meridional narrow out bounded by the coordinates 
04 9( n/S and Ogrp<Zn (Kg are the angular coordinates in the meridional and peripheral 
direction). A force P, is applied to the edge 6,=0 through a movable disc, the edge 
8, = n/s is clamped rigidly and remains fixed. The edges p=O and rp=Zn are free of external 
loads. The zone of influence of the edge p=O determining the domain of solution of the basic 
partial differential equation is not known, and is found for thin shells using membrane theory. 
Here the basic equation has the form /4/ 

where U=-T,R,sfn*@,T, are the tensile forces in the peripheral direction and R1,Rn are the 
radii of principal curvatures of the middle surface of the shells. In the case of a toroidal 
shell Eq.(l) will become 

*PriM.Ratem.flekhan.,51,1,172-175,1987 
135 



136 

Cd is the distance between the axis of symmetry of the toroidalshelland the centre of its 
meridional cross-section). 

Taking into account the fact that the stress state is axisymmetric and continuous outside 
the zone of influence of the edge cp= 0, we adopt for (2) the following boundary conditions: 

rJ Itli=@ = 0, u jr =f(E), auptp(,=o (3) 

Here L is the unknown boundary, f(E) is a function of TI known from the solution of the 
similar problem for a shell closed over 'p /5/; for a segment Dgegn/6 of a torus with 
A*= 20 cm, h= 0.02 cm, h= 3.3 and P,= 98 N, the function T%(E) is shown in Fig.1. 

Let us transform Eq.(2) by introducing the following substitution: 

y (E> (P) = f (E) - u (%, cp) 

@Y a?Y 
-@- + a'pp = F(Z), 

dV 
[;JQ=dgp 

(4) 

(5) 

Let us approximate the domain of solution of Eq.(S) with a set of rectangular elements 
(RE) of dimensions aj,di(i=0,1,2,...,n) (Fig.2). 

We shall write the boundary conditions (3) taking into account (4), in the form 

YI,=, -f(E)* Y/,=0 (6) 

On the sides of RE parallel to the 'p axis we have 
dYldcp = 0 (7) 

In mathematical language problem (5)-(7) is equivalent to the problem of the propagation 
of electromagnetic waves in a closed system of rectangular waveguides. We specify the source 
of perturbation at the boundary in the transverse cross-section of the waveguide shown by the 
dashed line in Fig.2, and consider the propagationandreflectionofthewavesin the longitudinal 
direction /6/. 

The solutions of (5) obtained by Galerkin's method for each RR have the form 

ca = I,==0 H= 
ch Yj (d - CP’) ch YjP’t 9’ < CP’ 

2, n#O, ch Y# ch yj V - cp% ‘PO > rp’ 

d*foj (2) 
sj (I) =.- 

dr* ’ 

Here z is a new variable chosen in such a manner that the 9 axis is the axis of symmetry 
of RE, S,(Z) is Green's function, Bja are unknown coefficients, cp' is the coordinate of the 
plane of coupling of the RR, and 'pe is the coordinate of the plane of integration of Green's 
functions characterizing the electromagnetic fields in the separate RE's. The choice of the 
function rl P@,p'i is determined by the theorem of equivalence, on the basis of which the real 
sources of electromagnetic field are replaced by equivalent surface currents and integral 
equations of the type (9) constructed /7/. 

The conditions that the solutions (8) match at the boundaries of the RE parallel to the 
Z axis (Fig.21, yield a system of equations. After integrating this system we obtain the 
coefficients Sja from a system of algebraic equations. 

In the well-known problem of electrodynamics the first boundary conditionof (6) corresponds 
to specifying the source of perturbation, and the condition of the minimum field of reflected 
wave determining the zone of influence of the source reduces to finding a minimum value of the 
integral 

Specifying the consecutive sets of values ar,djl beginning fromthe smallest possible value 
and increasing them in discrete steps, we determine IO. The condition for a minimum of the 
function 1, yields the form and size of the unknown boundary L. We see from the numerical 
calculations carried out for the parameters given earlier, that the maximum size of the domain 
of solution (in the m direction) is equal to qOcl) =0.41 (Fig.2). 
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We obtain the estimate of the maximum size of the domain of solution of (5) by analytic 
continuation of the function Y to the domain of the complex variable &= ~~i-i&,e= cpli @. 

Here (5) corresponds to the wave equation /8/ B'Yf~,8-ad"Yiaes9=P(I). Its characteristics are 
determined by the expression d&&tp,=fl, which forms a family of parallel lines parallel to 
the bisectrices of the coordinate angles whose apices satisfy the relation &nf~~=con~t. From 
the first boundary condition of (6), by equating 5% to the magnitude of the segment of the 
known part of the boundary (Fig.l,P) and the characteristic passing through until it intersects 
the q1 axis, we obtain an approximate estimate of the maximum size of the unknown domain of 
solution of cp,,(z) = 0.396, i.e. the difference between it and the result obtained earlier using 
the method of integral equations, does not exceed 3.5%. The comparison shows the possibility 
of using the method of characteristics to solve elliptical boundary value problems with an 
unknown boundary in the theory of thin shells. 
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VIBRATION OF AN ELASTIC ROD WITH DRY FRICTION ON ITS SIDE SURFACE* 

E.M. PODGAYETSKII 

steady longitudinal oscillations in a semibounded elastic rod are studied, 
taking into account "dry" friction on its side surface. An approximate 
solution is constructed using the method of harmonic linearization /l/ 
which leads to a boundary value problem for a system of two non-linear 
equations. The latter can be reduced to the Cauchy problem by a change 
of variables. Results of numerical computations are given. 

We consider the longitudinal oscillations ofaweightless one-dimensional elastic rod of 
constant cross-section, taking into account dry friction on its side surface. Steady 
oscillations are discussed, unlike in /2/ where a problem with initial data was solved for 
the case when the end face of the rod was loaded according to special laws. We specify a 
harmonic perturbation of the deformation at one of its ends and assume the other end (removed 
to infinity) to be at rest, to obtain the system 

~sa~~~~ = sa+6la9 - Q sign (adatt HI 
2=0, u= z&,cosot; Z’DO, Is-0 (u~~const>Of 

where u,S denote the displacement and the area of transverse cross-section, o is the 
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